If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=54
We move all terms to the left:
n^2+n-(54)=0
a = 1; b = 1; c = -54;
Δ = b2-4ac
Δ = 12-4·1·(-54)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{217}}{2*1}=\frac{-1-\sqrt{217}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{217}}{2*1}=\frac{-1+\sqrt{217}}{2} $
| 3(x)=-2x+4 | | 2(x+4)-10=5-(2x-4) | | 7/1(h-3)=6 | | 3x^2+7x^2-9x+10=0 | | 2(2p+6)=3(5p+4) | | 4(3x-4)=4(2x-2) | | 4x/5+7=15 | | 4x2-2x-12=0 | | −6(s+11)=−24 | | 3y-4y^2+3y=0 | | X^2-6x-155=0 | | 2x(2)+8x+12=0 | | r-4=6r+26 | | 16+4x=140 | | 3(y-3)=2(1-4y) | | -2x2+4×-67=0 | | 3g+g−–17=–19 | | 0=2x^2-13x-130 | | 2x^2-11x+130=0 | | 16x+32=14x+40 | | 36x+51=6x-9 | | 4(2y-7)+13=9 | | 3p+11=32 | | -2/3*x-9/4=0,8 | | 4(8x+5)=-33x-26 | | 44=20y | | z/12=4/5 | | x+10=4x-40 | | |x-1|+|x-4|=2 | | 6=12+(-2t) | | 3(7-2y)-2y=5 | | 3(7-2y)=5 |